STRUCTURE OF 18-HYDROXY-14-Q-METHYLGADESINE ## A NEW DITERPENE ALKALOID FROM CONSOLIDA ORIENTALIS A.G. González, G. de la Fuente and O. Munguía Instituto de Productos Naturales Orgánicos, CSIC, La Laguna, Tenerife, Spain ## K. Henrick Department of Chemistry, The Polytechnic of North London, Holloway, London N7 8DB, England. Summary. - The structure of 18-hydroxy-14,0-methylgadesine, isolated from Consolida orientalis, was determined by spectroscopic methods and X-ray crystallography. From <u>Consolida orientalis</u> Gay, subsp. orientalis (syn. Delphinium orientale Gay; incl. D. hispanicum Wilk.)¹, we have isolated a new diterpene alkaloid, 18-hydroxy-14-Q-methyl-gadesine (I), in a very small amount. 18-Hydroxy-14-Q-methylgadesine had m.p. 110 - 114°C. The MS is characteristic of alkaloids with lycoctonine skeletons: M⁺ 451.2567 amu (10%), $C_{24}H_{37}N_{07}$ (calcd. 451.2569); 436.2325 (100%), M⁺-CH₃ (calcd. 436.2314); 418.2242 (40%), $\{M^+-CH_3\}$ -H₂0 (calcd. 418.2229); 395.2286 (6%), M⁺-C₃H₄0 (calcd. 395.2307), ejection of acroleine from ring A owing to the carbinolamine inner ether². The IR (KBr) gave absorptions at 3420 (0H), 1115 and 1090 (C-0), 990 and 890 cm⁻¹ (inner ether³). Its PMR (CDCl₃) displayed signals at δ 1.10 (3H, t, J = 7Hz, N-CH₂-CH₃) 3.35 (3H, ε , 0CH₃), 3.43 (6H, ε , two 0CH₃), 3.67 (2H, ε , ε , CH₂0H), 4.00 and 4.08 (1H each, ε) which could be assigned to either C-6 ε H or C-19H. These spectroscopic data led to structure I being tentatively assigned to 18--hydroxy-14-Q-methylgadesine, assuming the oxygenation pattern of lycoctonine-type alkaloids 4. To confirm this structure an X-ray analysis was performed. The compound crystallized in the orthorhombic space group $P2_12_12_1$ with $\underline{a}=26.861(3)$, $\underline{b}=10.043(2)$, $\underline{c}=8433(2)\mathring{A}$, $\underline{U}=2274.9\mathring{A}^3$ and four molecules $C_{24}H_{37}N0_7.H_20$ per unit cell. The structure was refined to an \underline{R} of 0.043 for 1772 unique diffractometer data $\{\underline{I} \geqslant 3\sigma(\underline{I})\}$. The seven-member ring is stabilized in a boat form by a strong intramolecular hydrogen bond between H(08) ... $O(6)=1.92\mathring{A}$ and ring A exists as a skew-boat form. It is interesting to note that 18-hydroxy-14,0-methylgadesine, like gadesine⁶, is another example of a naturally occurring lycoctonine-type alkaloid with C-1-C-9 inner ether. Furthermore we have also isolated delsoline and delcosine⁴, previously reported in this plant⁵ and gigactonine⁷, identified by their 13 C-NMR spectra. ACKNOWLEDGEMENT: This work was supported in part by a grant from the CAICT and O. Munguía thanks the INAPE for a scholarship. ## REFERENCES - A.O. Chater, "Flora Europaea", ed.: T.G. Tutin, V.H. Heywood, N.A. Burgess, D.H. Valentine, S.M. Walters and D.A. Webb. Cambridge University Press (1964), p.216. - 2 S.W. Pelletier and S.W. Page, "Chemistry of Diterpene Alkaloids" in "The Alkaloids" (Spec. Per. Rep.) ed.: J.E. Saxon, The Chem. Soc., London (1973), Vol.3, p.235. - 3 R. Auct, D. Clayton and L. Marion, Can. J. Chem., 35, 397 (1957). - 4 S.W. Pelletier and N.V. Mody in 'The Alkaloids' ed.: R.H.F. Manske and R. Rodrigo, Academic Press Inc., New York (1979), Vol.17, p.1. - 5 M. Boyadzhieva, CA 63:16659a; T.F. Platonova and A.D. Kuzovkov, CA 59:6723g. - 6 A.G. González, G. de la Fuente, R. Díaz, J. Fayos and M. Martínez-Ripoll, *Tetrahedron Letters*, 79 (1979). - 7 S. Sakai and T. Okamoto, Heterocycles, 8, 207 (1977). (Received in UK 22 September 1981)